Iowa State University

Power loss surface for a [pi] circuit with susceptive shunt elements

James William Nilsson
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Nilsson, James William, "Power loss surface for a [pi] circuit with susceptive shunt elements " (1958). Retrospective Theses and Dissertations. 1638.
https://lib.dr.iastate.edu/rtd/1638

POWER LOSS SURPACE FOR A 11 CIRCUIT

 WITH SUSCEPTIVE SHUNT ELERENTSby

James Williem Nilsson

A Dissertation Submitted to the
 Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved:

Signature was redacted for privacy.
In Charge of Major Work

Signature was redacted for privacy.
Head of Major Department

Signature was redacted for privacy.
Dean of Graduate College

Iowa State College
1958

TABLE OF CONTENTS

Page
INTRODUCTION 1
THE INVESTIGATION 4
Development of the Power Loss Equation 5
Combining the Variables Into Dimensionless Combinations 8
Development. of the Loss Equation in Terms of the Dimensionless
Variables (E_{2} / E_{1}) , (K / R) and ($R P_{2} / E_{1}{ }^{2}$) 13
Determination of the Power Loss Surface 14
DISCUSSION OF THE POWER LOSS SURFACE 31
Power Loss Surface at the Limiting Values of 旦 31
Physical Significence of k and a 35
Tabulation of $P_{0_{\max }} / P_{00}$ and $P_{O_{\min }} / P_{00}$ 36
Interpratation of $P_{0}-V$ and $P_{0}-U$ Loci 39
Numerical Examples 43

- SUMMERY OF RESULTS 54
SELECTED REFERENCES 58
ACKNOWLEDGEMENT 60

INTRODUCTION

It has been 75 years since Edison's Pearl Street generating station first went into operation. In this span of time electric power systems have increased tremendously in size and complexity. One of the problems that has been made vastly more difficult by this growth is the economic dispatching of the electrical load. This dispatching is more difficult because in the present day interconnected electric-power systems the power losses associated with the high voltage transmission lines is comparable to the power losses associated with the generating stations. Therefore the most economic allocation of the electric power from the generating stations in the system cannot be made unless the variation in transmission line losses with respect to station generation is also known.

In the past 15 years a great deal of work has been done in the way of developing computational methods for including trensmission line losses in the economic dispatch problem. It was the study of this economic dispatch problem that aroused the author's interest in transmission line losses and led to the present investigation. However this investigation digresses from the problem which served as a stimulus in that it focuses attention on the losses of a particular circuit and not on the losses of an entire system: Th besic interest in minimizing transmission line losses led directly to the π circuit with susceptive shunt branches because any results obtained from studying the π circuit would be directly applicable to the power system transmission line. At the same time the π circuit is not limited to representing transmission lines, hence the results can be interproted in terms of any part of an electrical system that can be
represented by the π circuit.
Specifically the purpose of this investigation was to develop the power loss surface for a π circuit with susceptive shunt branches and then to study the surface with respect to its minimum points.

In reviewing the literature relating to electricel losses the author was unable to find anything which was directed along the line of this investigation. From the literature it is apparent that previous investigators of electricel losses have directed their efforts into two general areas. The first area that attracted the interest of early investigators was the general problem of accurately calculating electrical losses. The second area of interest was the study of the most economic operation of power systems ${ }^{1}$.

For example in reviewing the literature relating to transmission line Iosses the author found that the writers were concerned either with techniques for colculating line losses or with techniques for including the line losses in the economic dispatch problem. This is not surprising. The early investigators recognized that with the advent of the high Voltage long distance transmission line an accurate determination of line losses would require the solution of the line as a distributed paremeter circuit. Since the calculation of the line losses by this rigorous scIution of the transmission line entailed a great deal of time and effort

[^0]the early investigators spent considerable time looking into mathematical short cuts, charts, nomographs and similar techniques to simplify the calculations.

The economic dispatch problem is of tremendous importence to those engaged in the distribution and sale of eleetric power. Hence it is not surprising to find the interest lies in minimizing the total system loss rather than the losses of a: single element.

This investigator felt that the development of the power loss surface for a π circuit with particular attention to the minimum points on the surface would contribute some knowledge to the general problem of minimizing electrical losses.

The purpose of the investigation was to develop and study the power loss surface for a π circuit with susceptive shunt elements. In particular the analysis was concerned with locating the points on the surface corresponding to minimum power loss. In addition to locating the minimum points the explicit relationships among the variables at these minimum points was also sought.

The development of the power loss surface was carried out in four steps. The first step was to deveiop the expression for the power loss F_{0} as a function of the five variables in the system, namely: the input voltage E_{1}; the output voltage E_{2}; the circuit resistance R ; the circuit reactance X; and the output power P_{2}. Stated mathematically the first step in the development of the power loss surface was to formulate an expression of the form:

$$
\begin{equation*}
P_{0}=f\left(E_{1}, E_{2}, R, X, P_{2}\right) . \tag{1}
\end{equation*}
$$

The second step consisted of combining the variables into the dimonsionless combinations: $\left(E_{2} / E_{1}\right) ;(X / R)$; and $\left(R P_{2} / E_{1}^{2}\right)$. The dimensionless combinations were arrived at by means of Buckingham's Pi theorem.

The third step involved rewriting Equation 1 in terms of the dimensionless variables $\left(E_{2} / E_{1}\right),(X / R)$, and $\left(R P_{2} / E_{1}^{2}\right)$. Thus:

$$
\begin{equation*}
P_{0}=g\left[(x / R),\left(E_{2} / E_{1}\right),\left(R P_{2} / E_{1}^{2}\right)\right] . \tag{2}
\end{equation*}
$$

The fourth step comprised the study of the level surfaces generated by Equation 2 with ($R P_{2} / E_{1}^{2}$) as the parameter.

Development of the Power Loss Equation

The functional relationship defined in Equation 1 was derived on the basis of the schematic diagram shown in Figure 1. Figure 1 illustrates the conventional π circuit. The shunt susceptive branches are shown for completeness. The shunt susceptence does not enter into the loss equation and hence B is not a variable in the investigation. The positive sense of the terminal voltages and powers is defined in Figure 1. The expressions for the terminal powers P_{1} and P_{2} are:

$$
\begin{equation*}
P_{1}=\frac{E_{1} 2_{R}}{z^{2}}-\frac{E_{1} E_{2}}{z^{2}}[R \cos \delta-X \sin \delta] ; \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}=\frac{E_{2}^{2} R}{Z^{2}}-\frac{E_{1} E_{2}}{z^{2}}[R \cos \delta+X \sin \delta] . \tag{4}
\end{equation*}
$$

The power loss of the circuit is:

$$
\begin{equation*}
P_{0}=P_{1}+P_{2}=\frac{R}{z^{2}}\left[E_{1}^{2}+E_{2}^{2}-2 E_{1} E_{2} \cos \delta\right] \tag{5}
\end{equation*}
$$

From Equation 4 it is possible to obtain an expression for δ in terms of E_{1}, E_{2}, R, X, and P_{2}. The derivation is as follows. Rewrite Equation 4 as:

$$
\begin{equation*}
\frac{R}{Z} \cos \delta+\frac{X}{Z} \sin \delta=\frac{E_{2}^{2} R-Z^{2} P_{2}}{E_{2} E_{2}} \tag{6}
\end{equation*}
$$

Recognize that

$$
\begin{align*}
& \frac{R}{Z}=\cos \theta, \tag{7}\\
& \frac{X}{Z}=\sin \theta, \tag{8}
\end{align*}
$$

Figure 1. Schematic diagram of the π circuit
and

$$
\cos \theta \cos \delta+\sin \theta \sin \delta=\cos (\theta-\delta)
$$

and hence Equation 6 can be written

$$
\begin{equation*}
\cos (\theta-\delta)=\frac{E_{2}^{2} R-Z^{2} P_{2}}{E_{1} E_{2} Z} \tag{10}
\end{equation*}
$$

From Equation 10

$$
\theta-\mathcal{S}=\cos ^{-1} \frac{\mathrm{E}_{2}^{2} \mathrm{R}-\mathrm{z}^{2} \mathrm{P}_{2}}{\mathrm{E}_{]_{2}} \mathrm{E}_{2} Z}
$$

For convenience let

$$
\begin{equation*}
\beta=\cos ^{-1} \frac{E_{2}^{2} R-z^{2} P_{2}}{E_{1} E_{2}^{2}} ; \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
\delta=\theta-\beta ; \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \delta=\cos (\theta-\beta)=\cos \theta \cos \beta+\sin \theta \sin \beta \tag{14}
\end{equation*}
$$

From the definition of β the expressions for $\cos \beta$ and sin. β are readily obtained. Thus:

$$
\begin{equation*}
\cos \beta=\frac{\mathrm{E}_{2}^{2} R-Z^{2} \mathrm{P}_{2}}{\mathrm{E}_{1} \mathrm{E}_{2} Z} ; \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \beta=\sqrt{1-\cos ^{2} \beta}=\frac{1}{E_{1} E_{2} z} \sqrt{\left(E_{1} E_{2} z\right)^{2}-\left(E_{2}^{2} R-z^{2} P_{2}\right)^{2}} \tag{16}
\end{equation*}
$$

The substitution of Equations 15 and 16 into Equation 14 gives:

$$
\cos \delta=\frac{1}{E_{1} E_{2} z^{2}}\left\{R\left(E_{2}^{2} R-z^{2} P_{2}\right)+X \sqrt{\left(E_{1} E_{2} Z\right)^{2}-\left(E_{2}^{2} R-z^{2} P_{2}\right)^{2}}\right\}
$$

Equation 17 into 5. The result is:

$$
\begin{aligned}
P_{0}= & \frac{R}{Z^{4}}\left\{\left(E_{1}^{2}+E_{2}^{2}\right) Z^{2}+2 R P_{2} z^{2}-2 E_{2}{ }^{2} R^{2}\right. \\
& \left.-2 X \sqrt{\left(E_{1} E_{2} Z\right)^{2}-\left(E_{2}{ }^{2} R-Z^{2} P_{2}\right)^{2}}\right\}
\end{aligned}
$$

Equation 18 is the explicit expression for P_{0} as a function of E_{1}, E_{2}, R, X, and P_{2} as symbolized by Equation I.

Combining the Variables Into Dimensionless Combinations

The Buckinghem Pi theorem was used to find the dimensionless combinations of the six variables $E_{1}, E_{2}, R, X, P_{2}$ and P_{o}. Thus for the variables involved in this problem the requirement that

$$
P_{0}{ }^{g_{P_{1}}} b_{E_{2}} c_{R} d_{X} P_{2} f=\text { numeric }
$$19

takes the form

$$
\left(E^{2} Z^{-1}\right)^{e_{E}} b_{E^{c}}^{Z^{d}} Z_{Z^{e}}\left(E^{2} Z^{-I}\right)^{f}=E^{0} Z^{0}
$$

Rewriting Equation 20 as

$$
\mathrm{E}^{2} \mathrm{a}+\mathrm{b}+\mathrm{c}+2 f \cdot \mathrm{Z}^{-a+\mathrm{d}+e-f=\mathrm{E}^{\circ} \mathrm{Z}^{\circ} \mathrm{C}}
$$

leads directly to the relationships:

$$
\begin{align*}
& 2 a+b+c+2 f=0 \tag{22}\\
& -a+d+e-f=0
\end{align*}
$$23

An inspection of the matrix of a system tells which unknowns can be solved for in terms of the others. The matrix for this syrstem is

The rank of this matrix is 2. Now the renk of the matrix of the coefo ficients of the unknowns to be solved for must equal the rank of the matrix of the system. For example it is not possible to solve for a and f in terms of b, c, d, and e, because the matrix of the coefficients a and f has a rank of 1. That is the rank of the matrix

$$
\left|\left|\begin{array}{rr}
2 & 2 \\
-1 & -1
\end{array}\right|\right\}
$$

is 1. Thus the possible combinations of unkoms in terms of the remaining unknowns are:

I a and b in terms of c, d, θ, f
II a " c^{*} " " b, d, e, f
III a ${ }^{n} d^{n}$ " \quad b b, c, e, f
IV a " \quad " \quad " $\quad b, c, d, f$
V b " $\mathrm{d}^{\prime \prime}$ " " a, c, e, f

VII b "f f " \quad " $\quad \mathrm{c}, \mathrm{d}, \mathrm{e}$
VIII $c \quad " d{ }^{n} \quad " \quad a, b, e, f$
IX $c^{H} e^{\prime \prime} n^{n} a, b, d, f^{\prime}$
X c " f " \quad " a, b, d, θ
XI d " fin " $\quad \mathrm{f} \quad \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}$
XII $e^{n} f^{n} n^{n} a, b, c, d$.
Explicitly the selations I through XII are:
$I \quad a=d+e=f$
$b=-c-2 d-2 e$

II $\quad a=d+e-f$
$c=-b=2 d-2 e$

$$
\begin{array}{rl}
\text { III } \quad a & =-0.5(b+c+2 f) \\
d & =-0.5(b+c)-e \\
\text { IV } \quad a & =-0.5(b+c+2 f) \\
e & =-0.5(b+c)-d \\
\text { V } \quad b & =-2 a-2 f-c \\
d & =a+f-e \\
\text { VI } \quad b & =-2 a-2 f-c \\
\quad e & =a+f-d \\
\text { VII } \quad b & =-c-2 d-2 e \\
\quad f & =d+e-a \\
\text { VIII } \quad c & =-2 a-2 f-b \\
\quad d & =a+f-e \\
\text { IX } \quad c & =-2 a-2 f-b \\
e & =a+f-d \\
X \quad c & =-b-2 d-2 e \\
\quad f & =-a+d+e \\
X I \quad d & =-0.5(b+c)-e \\
X I I & e
\end{array}
$$

The relationships I through XII lead directly to the twelve sets of π groups given in Table I.

The question of which set of π groups to select was done by a process of elimination. The elimination process was based on rewriting Equation 1 in terms of the dimensionless $\pi_{\text {groups }} \pi_{1}, \pi_{2}, \pi_{3}$ and π_{4}. Thus

Table I
Dinensionless Combinations of the Six Veriables

$$
E_{1}-E_{2}-R-X-P_{2}-P_{0}
$$

Set Number	Buckinghem Pi Groups			
	π_{1}	π_{2}	π_{3}	π_{4}
I	$\mathrm{E}_{2} / \mathrm{E}_{1}$	$\mathrm{P}_{0} \mathrm{R} / \mathrm{E}_{2}{ }^{2}$	$P_{0} X / E_{1}{ }^{2}$	$\mathrm{P}_{2} / \mathrm{P}_{0}$
II	E_{1} / E_{2}	$\mathrm{P}_{0} \mathrm{R} / \mathrm{E}_{2}{ }^{2}$	$\mathrm{P}_{0} \mathrm{X} / \mathrm{E}_{2}{ }^{2}$	$\mathrm{P}_{2} / \mathrm{P}_{0}$
III	$E_{1} / \sqrt{P_{0} R}$	$\mathrm{E}_{2} / \sqrt{\mathrm{P}_{0} \mathrm{R}}$	X / R	$\mathrm{P}_{2} / \mathrm{P}_{0}$
IV	$E_{1} / \sqrt{P_{0}{ }^{X}}$	$\mathrm{E}_{2} / \sqrt{\mathrm{P}_{0} \bar{X}}$	R / X	$\mathrm{P}_{2} / \mathrm{P}_{0}$
V	$\mathrm{P}_{0} \mathrm{R} / \mathrm{E}_{1}{ }^{2}$	$\mathrm{E}_{2} / \mathrm{E}_{1}$	X / R	$\mathrm{P}_{2} \mathrm{R} / \mathrm{E}_{1}{ }^{2}$
VI	$P_{0} X_{1} / E_{2}{ }^{2}$	$\mathrm{E}_{2} / \mathrm{E}_{1}$	B / X	$\mathrm{P}_{2} \mathrm{X} / \mathrm{FH}_{1}{ }^{2}$
VII	$\mathrm{P}_{\mathrm{O}} / \mathrm{P}_{2}$	$\mathrm{E}_{2} / \mathrm{E}_{1}$	$\mathrm{P}_{2} \mathrm{R} / \mathrm{E}_{1}{ }^{2}$	$\mathrm{P}_{2} \mathrm{X} / \mathrm{E}_{1}{ }^{2}$
VIII	$\mathrm{P}_{\mathrm{O}} \mathrm{R} / \mathrm{E}_{2}{ }^{2}$	$\mathrm{E}_{1} / \mathrm{E}_{2}$	x / R	$\mathrm{P}_{2} \mathrm{R} / \mathrm{E}_{2}{ }^{2}$
IX	$\mathrm{P}_{0} \mathrm{X} / \mathrm{E}_{2}{ }^{2}$	$\mathrm{E}_{1} / \mathrm{E}_{2}$	R / x	$\mathrm{P}_{2} \mathrm{X} / \mathrm{E}_{2}{ }^{2}$
X	$\mathrm{P}_{\sim} / \mathrm{P}_{2}$	$\mathrm{E}_{1} / \mathrm{E}_{2}$	$\mathrm{P}_{2} \mathrm{R} / \mathrm{E}_{2}{ }^{2}$	$\mathrm{P}_{2} \mathrm{I} / \mathrm{E}_{2}{ }^{2}$
XI	$\mathrm{P}_{\alpha} / \mathrm{P}_{2}$	$E_{1} / \sqrt{P_{2}{ }^{R}}$	$\mathrm{E}_{2} / \sqrt{\mathrm{P}_{2} \mathrm{R}}$	X / R
XII	$\mathrm{P}_{\mathrm{ol}} / \mathrm{P}_{2}$	$E_{1} / \sqrt{P_{2}{ }^{X}}$	$\mathrm{E}_{2} / \sqrt{\mathrm{P}_{2}{ }^{\text {X }}}$	R / X

$$
\pi_{1}=h\left(\pi_{2}, \pi_{3}, \pi_{4}\right) .
$$

From Equation 24 it was evident that an explicit equation for P_{0} could be obtained if P_{0} appeared in only one π group. Hence the first four sets
were eliminated.
The selection of which set of the remaining π groups would be most suitable reduced to a study of the original circuit with regard to the most likely independent variables. Viewing the circuit in terms of possible variables eliminated the resistance R in the sense that for R equal to zero no loss problem existed. Recognizing the physical impossibility of reducing R to zero made X the most logical variable in terms of the series impedance of the circuit. Therefore all remaining sets in which X appeared in more then one π group were eliminated. Explicitly sets VI, IX, and XII.

The second independent variable that was selected was P_{2}. It seamed reasonable to assume that the performance of the circuit at different power output levels would be of primery concern. Therefore P_{2} should appesr in only one π group and thus sets VII, X, and $X I$ were eliminated.

Having selected X and P_{2} as independent variables the selection of the third and final variable was reduced to making a choice between the terminal voltages E_{1} and F_{2} 。 The choice of E_{2} as the third independent variable was based on the feeling that in most applications of π circuits the input voltage E_{1} would be insensitive to chenges in the output voltage E_{2}. With E_{2} as the third variable, set VIII was eliminated and this left V as the most desirable set.

Substituting the π groups of set V into Equation 24 gave the functional relationship:

$$
\begin{equation*}
P_{0}=\frac{E_{1}^{2}}{R} h\left[\frac{E_{2}}{E_{1}}, \frac{X}{R}, \frac{\mathrm{RP}_{2}}{E_{1}^{2}}\right] . \tag{25}
\end{equation*}
$$

Hence the next step in the devel opment of the loss surface was to rewrite

Equation 18 in terms of the ratios $\left(E_{2} / E_{2}\right),(X / R)$, and $\left(R P_{2} / E_{1}{ }^{2}\right)$ in order to obtain the explicit form of Equation 25.

Development of the Loss Equation in Terms of the Dimensionless

$$
\text { Variables }\left(E_{2} / E_{1}\right),(X / R) \text { and }\left(R P_{2} / E_{1}^{2}\right)
$$

To find the power loss as a function of the dimensionless ratios $\left(E_{2} / E_{1}\right),(X / R)$, and $\left(R_{2} / E_{1} 2\right)$ the quantity $E_{1}{ }^{2} R^{2}$ was factored out of the bracketed term of Equation 18. Thus Equation 18 became:

$$
\begin{aligned}
P_{0}= & \frac{E_{1}^{2}}{R\left[I+\left(\frac{X}{R}\right)^{2}\right]^{2}}\left\{\left[I+\left(\frac{E_{2}}{E_{1}}\right)^{2}\right] \cdot\left[I+\left(\frac{X}{R}\right)^{2}\right]\right. \\
& +\frac{2 R P_{2}}{E_{1}}\left[1+\left(\frac{X}{R}\right)^{2}\right]-2\left(\frac{E_{2}}{E_{1}}\right)^{2} \\
& \left.=2 \sqrt{\left(\frac{X}{R}\right)^{2}\left(\frac{E_{2}}{E_{1}}\right)^{2}\left[1+\left(\frac{X}{R}\right)^{2}\right]-\left(\frac{X}{R}\right)^{2}\left[\left(\frac{E_{2}}{E_{1}}\right)^{2}-\frac{R P_{2}}{E_{1}}\left[1+\left(\frac{X}{R}\right)^{2}\right]\right]}\right\}
\end{aligned}
$$

In working with Equation 26 it wes convenient to make the following simplifications in nomenclature: $U=(X / R)^{2} ; V=\left(E_{2} / E_{1}\right)^{2} ;$ and $W=\left(R P_{2} / E_{1}{ }^{2}\right)$. Thus Equation 26 simplified to:

$$
\begin{aligned}
P_{0}= & \frac{E_{1}^{2}}{R(1+U)^{2}}\{(1+V)(1+U)+2 W(1+U)-2 V \\
& \left.-2 \sqrt{U(1+U)-U[V-W(1+U)]^{2}}\right\} .
\end{aligned}
$$

Determining the level surfaces generated by Equation 27 with W treated as a paraneter comprised the fourth and final step of the investigation.

Determination of the Power Loss Surface

When any one of the variables U, V, or W of Equation 27 is considered constent the resulting equation is that of a surface in three dimensionel space. A family of surfaces is generated as the "constant" takes on various values. The power loss surface was developed on the basis that W would be the paremeter that generated a family of surfaces. Hence for a given $v a l u e$ of W the output power of the π circuit would be fixed and the resulting surface would give the power loss as a function of U and V. The selection of \mathbb{W} as the parameter was based on the premise that studying the operation of the π circuit at fixed power outputs would be more realistic then studying the operation of the circuit at fixed voltage ratios V or fixed impedance ratios U.

With W considered constant Equation 27 took the form

$$
\begin{equation*}
P_{0}=F(U, V) \tag{28}
\end{equation*}
$$

The nature of the surface described by Equation 28 was determined by cutting the surfiace with constant $P_{0}, ~ U$, and V plenes. The results of cutting the power loss surface with constant $P_{0}, ~ U$, and V plenes are given in the following three subsections.

U VE. V for constant values of P_{0}

Letting a represent a particular value of W and k represent the ratio R/Ej Equation 27 was written in the form:

$$
k(1+U)^{2} P_{0}=(1+V)(1+U)+2 a(1+U)-2 V-2 \sqrt{U V(1+U)-U[V-a(1+U)]^{2}}
$$

To remove the radical sign in Equation 29 the equation was rewritten so that the radical term appeared on one side of the equation and the remaining terms on the other side. The resulting expression was squared and then factored into the foilowing expression:

$$
\begin{align*}
& (1+U)^{2}\left\{\left(k P_{0}\right)^{2} U^{2}-2 k P_{0} U V+2 U\left[2 a^{2}+P_{0}^{2} k^{2}-k P_{0}(1+2 a)\right]\right. \\
& \left.+\nabla^{2}-2 \nabla\left(1+2 a-k P_{0}\right)+\left(1+2 a-k P_{0}\right)^{2}\right\}=0 . \tag{30}
\end{align*}
$$

With U a positive number by definition, the term inside the brackets of Equation 30 had to equal zero. Thus:

$$
\begin{aligned}
& \left(k P_{0}\right)^{2} U^{2}-2 k P_{0} W V+2 U\left[2 a^{2}+P_{0}^{2} k^{2}-k P_{0}(1+2 a)\right]+V^{2} \\
& \quad-2 V\left(1+2 a-k P_{0}\right)+\left(1+2 a-k P_{0}\right)^{2}=0 .
\end{aligned}
$$

For a constant vaine of P_{0} Equation 31 is a second degree equation in U and V. Explicitly it is of the form:

$$
\begin{equation*}
A U^{2}+B O V+C V^{2}+D U+E V+F=0 . \tag{32}
\end{equation*}
$$

The nature of the $U-\nabla$ locus for constant $V a l u e s$ of P_{0} is determined by the value of B^{2} - $4 A C$ in Equation 32. Equation 32 has as a locus a circle (if $A=C, B=0$), an ellipse (if $B^{2}-4 A C<0$), a hyperbola (if $B^{2}-4 A C>0$), or a parabola (if $B^{2}-4 A C=0$). For Equation 32:

$$
\begin{equation*}
B^{2}-4 A C=4 K^{2} P_{0}^{2}-4 K^{2} P_{0}^{2}=0 . \tag{33}
\end{equation*}
$$

Therefore the U VS. V trace in a constant P_{0} plane was found to be a parabola.

The characteristics of the U - ∇ parabola's were obtained by solving Equation 31 for: (a) V as a function of U; (b) U as a function of V; and (c) the angle of rotation wich would eliminate the UV term. These solutions led to the following equations:

$$
\begin{align*}
& V=\left(1+2 a-k P_{0}\right)+U k P_{0} \pm 2 \sqrt{U\left[k P_{0}-\left(a-k P_{0}\right)^{2}\right]} \tag{34}\\
& \begin{aligned}
& U=\frac{1}{k^{2} P_{0}^{2}}\left\{\left(V k P_{0}-a^{2}\right)+\left[P_{0} k-\left(a-k P_{0}\right)^{2}\right]\right. \\
&\left. \pm 2 \sqrt{\left(V k P_{0}-a^{2}\right)\left[k P_{0}-\left(a-k P_{0}\right)^{2}\right]}\right\} \\
& \tan 2 \emptyset=\frac{2 \tan \emptyset}{1-\tan ^{2} \varnothing}=\frac{B}{A-C}=\frac{2 k P_{0}}{1-k^{2} P_{0}^{2}} .
\end{aligned}
\end{align*}
$$

Studying Equations 34 through 36 led to the following observations concerning the \mathbb{U} - V parabolas:

1. The parabolas degenerate into straight lines at the values of P_{0} that make the term $\left[k P_{0}=\left(a-k P_{0}\right)^{2}\right]$ equel to zero. Hence these values of P_{0} represent the maximum and minimum values of the power loss in the circuit. Explicitly:

$$
\begin{align*}
& P_{o_{\max }}=\frac{(1+2 a)+\sqrt{1+4 a}}{2 k} \tag{37}\\
& P_{O_{\min }}=\frac{(1+2 a)-\sqrt{1+4 a}}{2 k} \tag{38}
\end{align*}
$$

Furthermore at these vaiues of P_{0} the equations of the UV lines were found to be:
at $P_{0_{\text {max }}}$

$$
\nabla=\frac{\tilde{U}}{2}[1+2 a+\sqrt{1+4 a}]+\frac{1}{2}[1+2 a-\sqrt{1+4 a}]
$$

at $\mathrm{P}_{\mathrm{o}_{\text {min }}}$

$$
\begin{equation*}
V=\frac{U}{2}[1+2 a-\sqrt{1+4 a}]+\frac{I}{2}[1+2 a+\sqrt{1+4 a}] \tag{40}
\end{equation*}
$$

2. At U equal to zero V is single valued and has the value
(1+2a-kPo). This point is where the parabola is tangent to the $P_{0}-V$ co-ordinate plene. As the velue of P_{0} decreases from its maximum to its minimum value this tangent point traces the straight line

$$
\begin{equation*}
V=1+2 \mathrm{a}-\mathrm{kP} P_{0} \tag{41}
\end{equation*}
$$

in the $P_{0}-\nabla$ co-ordinate plone.
3. The $J-V$ perabola is aiso tangent to the line: $V=a^{2} / k P_{0}$. The U co-ordinate at this point of tangency is $\left[k P_{0}-\left(a-k P_{0}\right)^{2}\right] / k^{2} P_{0}^{2}$. As P_{0} passes from its maximum to its minimum vaiue this tangent point traces a parabolic curve. The projection of this curve onto the U - V co-ordinate plane was found to be:

$$
\begin{equation*}
V^{2}-(1+2 a) V+a^{2} \pi+a^{2}=0 \tag{42}
\end{equation*}
$$

or;

$$
\begin{equation*}
U=\frac{1}{a^{2}}\left[V-(V-a)^{2}\right] \tag{43}
\end{equation*}
$$

4. The principal axis of the parabola has a slope equal to kP_{o}. Therefore as P_{0} decreases from its maximum to its minimum value the principle axis of the parabola rotates clockwise.

These characteristics of the $U-V$ parabolas are shown graphically in Figures 2 and 3.

Por. Vifor constant values of U

For a constant value of U Equation 31 has as a locus an ellipse. This was established by letting b represent a particular value of U and then putting Equation 31 in the form:

$$
\begin{gather*}
k^{2}(b+1)^{2} P_{o}^{2}+2 k(1-b) V P_{o}+V^{2}-2 k(1+2 a)(b+1) P_{0} \\
-2(1+2 a) V+4 a^{2} b+(1+2 a)^{2}=0 . \tag{44}
\end{gather*}
$$

Figure 2. A three dimensional view illustrating the orientation of the U-V parabolas

Figure 3. A two dimensionel view illustrating the orientation of
the $U-V$ parabolas

Then recognizing Equation 44 as a second degree equation of the form:

$$
A P_{0}^{2}+B V P_{0}+C V^{2}+D P_{0}+E V+F=0 ;
$$

the elliptical locus was established by noting that the characteristic B^{2} - 4AC was less than zero. Explicitly:

$$
B^{2}-4 A C=[2 k(1-b)]^{2}-4 k^{2}(b+1)^{2}=-16 b k^{2}
$$

The following characteristics of the $P_{0}-V$ ellipses were noted from a study of Equation 44.

1. The centers of the $P_{C}-V$ ellipses were foum to lie along the straight line

$$
\begin{equation*}
V=\frac{1+2 a}{2} U \div \frac{1+2 a}{2} \tag{47}
\end{equation*}
$$

in the constent P_{0} plene ($1+2 a$)/2k. Explicitly the centers of the ellipses lie at the co-ordinate points:

$$
\begin{align*}
& V=\frac{(1+2 a)(b+1)}{2} \tag{48}\\
& P_{0}=(1+2 a) / 2 k \tag{49}
\end{align*}
$$

2. At b equals zero the ellipse degenerates into the straight line $\nabla=1+2 \mathrm{a}=\mathrm{kP} \mathrm{P}_{\mathrm{O}}$. This line in the $\mathrm{P}_{\mathrm{O}}-\mathrm{V}$ co-ordinate plane corresponds to the points where the $U-\nabla$ parabolas are tangent to the $P_{0}-\nabla$ co-ordinate plane.
3. To eliminate the $P_{0} V$ term in Equation 44 the $P_{0}-V$ co-ordinate axes would have to be rotated through an angle θ such that:

$$
\tan 2 \theta=\frac{2 k(1-b)}{1-k^{2}(b+1)^{2}}
$$

(A positive value of θ corresponds to a counter-clockwise rotation of the axes.)

From Equation 50 it was noted that at bequal to zero the tan θ was equal to \underline{k} and at \underline{b} equal to one the $\tan \theta$ was equal to zero. Thus the Value of θ at \underline{b} equal to zero agreed with the slope of the straight line formed by the degenerate ellipse; and the value of $\theta a t$ b equal to one corresponded to the intersection of the streight lines formed by the degenerate parabolas.
4. The points along the ellipse where $d P_{0} / d V$ was equel to zero were found by differentiating Equarion 44 with respect to V and solving for apo/dV. Thus

$$
\begin{equation*}
\frac{d P_{0}}{d V}=\frac{(1+2 a)-V-k P_{0}(1-b)}{k^{2} P_{0}^{2}(b+1)^{2}+k V(1-b)-k(1+2 a)(b+1)} \tag{51}
\end{equation*}
$$

For $d P_{d} / d V$ to be equal to zero requires

$$
\begin{equation*}
(1+2 a)-V-k P_{0}(1-b)=0 \tag{52}
\end{equation*}
$$

Solving Equetion 52 for $k P_{0}$ and substituting this value back into Equation 44 led to the fellowing:

$$
\begin{equation*}
V=\frac{1}{2}(1+2 a)(b+1) \pm \frac{1}{2}(b-1) \sqrt{1+4 a} \tag{53}
\end{equation*}
$$

Since Equation 53 is equivalent to Equations 39 and 40 the slope along a $P_{0}=V$ ellipse was found to be zero at the points where the $U-V$ parabolas degenerated into straight lines.
5. The minimum and maximum values of V along the $P_{0}-V$ ellipse were obtained by solving Equation 44 for $k P_{0}$. Thus:

$$
k P_{0}=\frac{(1+2 a)(b+1)-(1-b) \nabla \pm 2 \sqrt{b\left[\nabla(1+2 a)(b+1)-V^{2}-a^{2}(b+1)^{2}\right]}}{(b+1)^{2}}
$$

The limiting values of V are the values of V that make the radical term in

Equation 54 zero. Explicitly:

$$
\begin{aligned}
& V_{\min }=\frac{b+1}{2}(1+2 a-\sqrt{1+4 a}) \\
& \nabla_{\max }=\frac{b+1}{2}(1+2 a \div \sqrt{1+4 a})
\end{aligned}
$$

These cheracteristics of the $P_{0}-\nabla$ ellipses are shown graphically in Figures 4 and 5.

Povs. U for constant V planes

Having cut the power loss surface with constant P_{0} planes and constant U planes it remained to investigate the P_{0} VS. U locus for constant velues of V. Letting e represent a particular \forall viue of V, Equation 31 became:

$$
k^{2} P_{0}^{2}(U+1)^{2}-2 k P_{0}[U(c+1+2 a)-c+1+2 a]+4 a^{2} U+[c-(1+2 a)]^{2}=0 .
$$

Solving Equation 57 for $k P_{0}$ gave:

$$
k P_{0}=\frac{U(c+1+2 a)-c+1+2 a \pm 2 \sqrt{U\left\{(U+1) c-[a(U+1)-c]^{2}\right\}}}{(U+1)^{2}}
$$

From Equation 57 or Equation 58 it was apparent that the P_{0} - U locus could not be described in terms of circles, parabolas, hyperbolas, or ellipses. Never-the-less further insight into the nature of the loss surface was obtained by making this cut. The results of cutting the loss surface with constant P_{0} planes and constant U planes had established the maximum and minimum points on the surface as those points along the straight lines described by Equations 39 and 40. However from Equation 40 it was apparent that only the minimum points corresponding to V greater than $[1+2 a+\sqrt{1+4 a}]$ were known. For \forall.lues of V between $[1+2 a-\sqrt{1+4 a}]$

Pl
Ellipse degenerates into a straight line $V=1+2 a-k P_{0}$ in the $\mathrm{P}-\mathrm{V}$ coordinate plane-

Figure 4. A three dimensional view illustrating the orientation of the $P_{0}-V$ ellipses

Figure 5. A two dimensional view illustrating the orientation of the $P_{0}-V$ ellipses for $b>1$
and $[1+2 a+\sqrt{1+4 a}]$ the locus of minimum points had not been established. To find this locus it was necessary to locate the points where $d P_{d} / d U$ was equal to zero.

From Equation 57 the expression for $\mathrm{dP}_{\mathcal{O}} / \mathrm{dU}$ was found to be:

$$
\begin{equation*}
\frac{d P_{0}}{d U}=\frac{\left[k P_{0}(c+1+2 a)-k^{2} P_{0}^{2}(U+I)-2 a^{2}\right]}{k\left\{k P_{0}(U+1)^{2}-[U(c+1+2 a)-c+1+2 a]\right\}} \tag{59}
\end{equation*}
$$

Thus for $\mathrm{dP}_{0} / \mathrm{dU}$ to equal zero it is necessary that:

$$
k P_{0}(c+1+2 a)-k^{2} P_{0}^{2}(J+1)-2 a^{2}=0
$$

To verify that the loci described by Equations 39 and 40 correspond to maximum and minimum points, Equation 60 was shown to be satisfied for these paricicular values of P_{0}, U, and c. Thus to show that $d P_{\rho} / d U$ was zero along the line described by Equation 39, Equation 60 was shown to be satisfied for:

$$
\begin{equation*}
k P_{0}=\frac{1}{2}[(1+2 a)+\sqrt{1+4 a}] \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
c=\frac{1}{2}[0(1+2 a+\sqrt{1+4 a})+(1+2 a-\sqrt{1+4 a})] \tag{62}
\end{equation*}
$$

To show that $d P d$ du was zero along the line described by Equation 40 the values:

$$
\begin{equation*}
k P_{0}=\frac{1}{2}[1+2 a-\sqrt{1+4 a}] \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
c=\frac{1}{2}[0(1+2 a-\sqrt{1+4 a})+(1+2 a+\sqrt{1+4 a})] \tag{64}
\end{equation*}
$$

were shown to satisfy Equation 60.
$d P d / d J$ was also found to be zero along the locus traced out by the \mathbb{V}_{M} tangent point of the $U-V$ parabolas. That is Equation 60 was also satisfied for:

$$
\begin{equation*}
U=\frac{\left[k P_{0}-\left(a-k P_{0}\right)^{2}\right]}{k^{2} P_{0}^{2}} \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
c=\frac{a^{2}}{k P_{0}} . \tag{66}
\end{equation*}
$$

To determine whether or not the points along the V_{M} tangent point trace corresponded to a meximum, minimum, or inflection point on the $P_{0}-J$ locus it was necessary to study the second derivative of P_{0} with respect to U along this curve. To study the second derivative Equation 59 was put in the form:

$$
\begin{equation*}
\frac{d P_{0}}{d U}=P_{0},=\frac{F\left(P_{0}, U\right)}{G\left(P_{0}, U\right)} \tag{67}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d^{2} P_{0}}{d U^{2}}=P_{0} u=\frac{G\left(P_{O}, U\right) F^{v}\left(P_{O}, U\right)-F\left(P_{O}, \Pi\right) G^{\prime}\left(P_{O}, U\right)}{\left[G\left(P_{0}, U\right)\right]^{2}} \tag{68}
\end{equation*}
$$

At P_{0} ' equal to zero the expression for $P_{0}{ }^{\prime \prime}$ is

$$
\begin{equation*}
\left.P_{0}^{\prime \prime}\right|_{P_{0}^{\prime}=0}=\left.\frac{F^{\prime}\left(P_{0}, U\right)}{G\left(P_{0}, U\right)}\right|_{P_{0}=0}=\frac{-k^{2} P_{0}^{2}}{G\left(P_{0}, U\right)} \tag{69}
\end{equation*}
$$

Along the V_{M} tengent point trace Equation 69 becomes:

$$
\begin{equation*}
P_{0}^{n}=\frac{-a^{6}}{2 c^{3}\left[(c-a)^{2}-c\right]} \tag{70}
\end{equation*}
$$

From Equation 70 it was noted that the algebraic sign of $P_{0}{ }^{\prime \prime}$ depends on the sign of the quentity $\left[(c-a)^{2}\right.$ - c] because c is positive by definition and a^{6} is positive because it is a number raised to an eron power. To study the nature of the quantity $\left[(c-a)^{2}-c\right]$ the function H was created thus:

$$
\begin{equation*}
H=(c-a)^{2}-c . \tag{71}
\end{equation*}
$$

H was observed to have the following cheracteristics:
(a) $H=0$ at $c=\frac{1}{2}[(1+2 a) \pm \sqrt{1+4 a}]$
(b) $\frac{d H}{d c}=-\sqrt{1+4 a}$ at $c=\frac{1}{2}[(1+2 a)-\sqrt{1+4 a}]$
(c) $\frac{d H}{d c}=+\sqrt{1+4 a}$ at $c=\frac{1}{2}[(1+2 a)+\sqrt{1+4 a}]$
(d) $\frac{d H}{d c}=0$ at $c=\frac{1}{2}(1+2 a)$
(e) $H=-\frac{1}{4}(1+4 a)$ at $c=\frac{1}{2}(1+2 a)$.

These characteristics of H are shown graphically in Figure 6.
With H established as a negative quantity in the interval $\frac{1}{2}$ ($1+2 a-$ $\sqrt{1+4 a})<c<\frac{1}{2}(1+2 a+\sqrt{1+4 a})$ the second derivative P_{0} "was found to be positive along the V_{M} tengent point locus and therefore these points correspond to minimum values of P_{0}.

The value of P_{0} along the V_{M} tangent point locus was found by substituting Equation 43 (with ∇ replaced by c) into Equation 57. Thus along this curve:

$$
\begin{equation*}
P_{O_{\min }}=\frac{E_{1}^{2} a^{2}}{R_{c}} \tag{72}
\end{equation*}
$$

H

Figure 6. A grephical representation of H

Thus with regard to the maximum and minimum points the salient features of the $P_{0}-U$ locus were established, namely:

1. For c greater than $1 / 2[1+2 a-\sqrt{1+4 a}]$ the maximum point on the $P_{0}-U$ locus corresponded to the maximum point on the $P_{0}-V$ locus which in tura corresponded to the line formed by the degenerate $U-V$ paraincia when P_{0} was equal to $P_{a_{m a x}}$
2. For c greater than $1 / 2[1+2 a+\sqrt{1+4 a}]$ the minimum point on the $P_{0}-U$ locus corresponded to the minimum point on the $P_{0}-V$ locus which in turn corresponded to the line formed by the degenerate $U-V$ parabola for P_{0} equal to $P_{O_{\text {min }}}$
3. For values of c between $1 / 2[1+2 a-\sqrt{1+4 a}]$ and $1 / 2[1+2 a+\sqrt{1+4 a}]$ the minimum point on the $P_{0}-U$ locus corresponded to the V_{M} tengent point of the $U=V$ parabola, and has a value of $E_{1}^{2} a^{2} / R c$.

In addition to the observations made regarding the maximum and minimum points of the $P_{0}-\mathbb{J}$ locus, further characteristics of the $P_{0}-U$ locus were noted from Equation 58.
4. At U equal to zero Equation 58 reduces to $k P_{0}=1+2 a-c$. Thus the $P_{0}-U$ loci and the $U-V$ parabolas are tangent to the $P_{0}-V$ co-ordinate plane at the same points.
5. The limiting values of U are obtgined from the radical term in Equation 58. That is, solving the expression

$$
\begin{equation*}
(U+1) c-[a(U+1)-c]^{2}=0 \tag{73}
\end{equation*}
$$

for U gites:

$$
\begin{equation*}
\pi=\frac{c}{a^{2}}\left[\frac{(1+2 a) \pm \sqrt{1+\frac{1}{i} a}}{2}\right]-1 \tag{74}
\end{equation*}
$$

For $1 / 2[1+2 a-\sqrt{1+4 a}] \leq c \leq 1 / 2[1+2 a+\sqrt{1+4 a}]$ the minimum value of U is zero and the maximum velue of U is:

$$
\begin{equation*}
u_{\max }=\frac{c}{2 a^{2}}[1+2 a+1+4 a]-1 \tag{75}
\end{equation*}
$$

For all values of $c>1 / 2[1+2 a+\sqrt{1+4 a}]$ the minimum and maximum values of U are given directly by Equation 74.

The fact that Equation 74 will not give the minimum value of U for $c<1 / 2[1+2 a+\sqrt{1+4 a}]$ comes from the observation that for $c=1 / 2[1+2 a+$ $\sqrt{1+4 a}]$, $\mathrm{U}_{\min }$ equals zero. For c less then this value the expression for $\square_{\text {nin }}$ yields a negative number. By definition U is equel to or greater than zero, hence $J_{\min }$ is zero for $1 / 2[1+2 a-\sqrt{1+4 a}] \leqslant c \leqslant 1 / 2[1+2 a+\sqrt{1+4 a}]$.

DISCUSSION OF THE POWER LOSS SURFACE

The discussion of the power loss surface has been subdivided into five parts. The first part of the discussion deals with the limiting values of a and the nature of the surface at these $\forall a l u e s$ of a. The second phase of the discussion consists of noting the physical significance of the quantities k and a which appear in all the equations that describe the nature of the power loss surface. A table from wich maximum and minimum velues of P_{0} can be readily calculated comprises the third part of the discussion of results. The fourth section of the discussion is devoted to interpreting the $P_{0}=V$ and $P_{0}-U$ loci in terms of circuit operation. The fifith and final part of the discussion consists of numerical eramples to illustrate the application of the results to an actual π circuit.

Power Loss Surface at the Limiting Values of a

The power loss surface was developed with the quentity ($R P_{2} / E_{1}^{2}=a$) as a parameter. Therefore a series of surfaces is created as a tekes on Various values. The first step in the study of the loss surface was to investigate the surfaces which correspond to the limiting values of a. The selected independent variables are X, E_{2} and P_{2} and therefore the range of a is determined by the range of P_{2}. The smallest value of P_{2} is zero whereas the largest value is $E_{1} 2 / 4 R$. P_{2} is a negative number for power flows out of the output terminals and hence the parameter a lies between $-1 / 4$ and 0 , thus:

$$
\begin{equation*}
-1 / 4 \leq a \leq 0 \tag{76}
\end{equation*}
$$

For a equel to $-1 / 4$ the power loss surface collapses to a line in
space. Thus at a equal to $-1 / 4$:
(a) $P_{O_{\text {ma }}}=P_{O_{\min }}=\frac{E_{1}^{2}}{4 R} ;$
(b) The U - V parabolas degenerate into the line

$$
V=\frac{1}{4}(v+1) ;
$$

and
(c) The centers of the $P_{0}-V$ ellipses are located at

$$
\begin{align*}
y & =\frac{1}{4}(b+1) \\
P_{0} & =\frac{E_{1}^{2}}{4 R} \tag{79}
\end{align*}
$$

Equation 77 expresses the well known fact that at maximum power transfer the losses are equal to the power output. Equations 78 and 79 show that the lose surface has been reduced to a straight line [$V=1 / 4$ ($U+1$)] which is parallel to the U - V co-ordinate plane. The distance between the line and the plane is $\mathrm{E}_{1}{ }^{2} / 4 \mathrm{R}$.

At a equal to zero the power loss surface takes on the following characteristics:

1. $P_{o_{\max }}=\frac{E_{1}^{2}}{R}$.
2. $P_{o_{\text {inin }}}=0$.
3. At $P_{O_{\text {max }}}$ the $U-V$ parabola degenerates into the line:

$$
\begin{equation*}
V=U \tag{82}
\end{equation*}
$$

4. At $P_{O_{m i n}}$ the $U-V$ parabola degenerates into the line:

$$
V=1
$$

5. At U equal to zero the $P_{0}-V$ ellipse degenerates into the line:

$$
\begin{equation*}
P_{0}=\frac{1}{k}(1 m) \tag{84}
\end{equation*}
$$

6. The centers of the $P_{0}=V$ eilipses iie in the plane:

$$
\begin{equation*}
P_{0}=\frac{E_{1} 2}{2 R} \tag{85}
\end{equation*}
$$

snd describe the line

$$
V=\frac{1}{2}(U+1)
$$

in this plane.
7. The expression for the $U-V$ parabolas becomes:

$$
V=U k P_{0}+\left(1-k P_{0}\right) \pm 2 \sqrt{0 k P_{0}\left(1-k P_{0}\right)}
$$

8. The ∇_{M} tangent point of the $U=V$ parabolas lies in the $P_{0}-U$ comordinate plane and traces out the curve:

$$
\begin{equation*}
P_{0}=\frac{1}{k} \cdot \frac{1}{(\mathbb{U}+1)} \tag{88}
\end{equation*}
$$

9. The expression for the $P_{0}-V$ ellipses becomes:

$$
\begin{equation*}
P_{0}=\frac{1}{k}\left[\frac{V b+(1+b-V) \pm 2 \sqrt{V b(1+b-V)}}{(b+1)^{2}}\right] \tag{89}
\end{equation*}
$$

10. The limiting velues of V along the $P_{0}-\nabla$ ellipses are:

$$
\begin{align*}
& \nabla_{\min }=0 \\
& V_{\max }=(b+1) \tag{90}
\end{align*}
$$

11. The expression for the $P_{0}-U$ loci becomes:

$$
\begin{equation*}
P_{0}=\frac{1}{k}\left[\frac{U c+1+U-c \pm 2 \sqrt{U c(1+U-c)}}{(U+1)^{2}}\right] \tag{91}
\end{equation*}
$$

12. The limiting velues of U along the $P_{0}-U$ loci are:

$$
\begin{aligned}
& U_{\min }=0 \\
& U_{\max }=\infty
\end{aligned}
$$

In interpreting the loss surface for a equal to zero it must be recog* nized that three different conditions may exist at the output terminals. Thst is, a will equal zero when:

1. The output terminals are open cirouited;
2. The output terminels are short circuited;
or when
3. The output load is purely reactive.

When the output terminals are open circuited the power loss surface degenerates to the line $V=1$ in the $V-V$ co-ordinate plene. With no output power required, the minimum possible value of P_{0} is obviously zero. Zero loss implies zero current. This zero current condition will be satisfied if E_{1} and E_{2} are equal in magnitude and phase. Thus the line $V=1$ in the $\mathrm{J}-\mathrm{V}$ co-ordinate plane implies that these conditions exist at the terminals of the circuit.

When the output terminals are short circuited V will be identically zero and the loss surface reduces to the curve:

$$
\begin{equation*}
P_{0}=\frac{1}{k} \cdot \frac{1}{\mathbb{U}+1} \tag{93}
\end{equation*}
$$

Replacing k by $\left(R / E_{1}{ }^{2}\right)$ and U by $(X / R)^{2}$ Equation 93 takes the familiar form:

$$
\begin{equation*}
P_{0}=\frac{E_{1}^{2}}{z^{2}} R=I^{2} R \tag{94}
\end{equation*}
$$

Under this condition the power loss approaches zero as \mathbb{U} approaches infinity.

When the π circuit is terminated in a purely reactive impedance the power loss will vary somewhere between zero and $E_{1}{ }^{2} / R$ depending on the
value of the terminating reactance. When the terminating reactance is such that it resonates with the reactance of the series impedance of the circuit the power loss surface becomes the line $U=V$ in the plane $P_{0}=1 / k$. This substantiates that in a series resonent circuit the power losis is E_{1}^{2} / R and the ratio of the voltages E_{2} to E_{1} equals the X / R ratio of the series impedance.

These observations concerning the nature of the power loss surface at the limiting values of a are of interest in that they show that resuits obtained from the power loss surface are in agreement with results which are readily obtained by other techniques. Therefore these observations serve to verify the validity of the general power loss surface.

Having looked at the limiting values of a and the nature of the loss surface at these $v o l u e s$ of a the next step in the analysis of the results was to note the physical significance of the quantities \underline{k} and a.

Physical Significence of k and a

From Equation 80 the physical significance of \underline{k} is apparent. Equation 80 states that the maximum possible value of $\mathrm{P}_{\mathrm{O}_{\max }}$ is $\mathrm{E}_{\mathrm{I}}{ }^{2} / \mathrm{R}$ and k is the reciprocal of this quentity. Thus:

$$
\begin{equation*}
\frac{1}{k}=\frac{E_{1}^{2}}{R}=P_{00} \tag{95}
\end{equation*}
$$

Where P_{00} represents the maximum possible value of $\mathrm{P}_{\mathrm{o}_{\text {max }}}$.
This observation with respect to \underline{k} leads to the observation that the parameter a represents the ratio of the output power to the maximum possible loss in the circuit, that is

$$
a=\frac{R P_{2}}{E_{1}{ }^{2}}=\frac{P_{2}}{P_{00}} .
$$

Using the observation expressed in Equation 95 the expressions for $P_{O_{\text {max }}}$ and $P_{O_{\text {min }}}$ are writter in the form:

$$
\begin{equation*}
\frac{P_{0_{\max }}}{P_{00}}=\frac{1+2 a+\sqrt{1+4 a}}{2} \tag{97}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{0_{\min }}}{P_{00}}=\frac{1+2 a-\sqrt{1+4 a}}{2} \tag{98}
\end{equation*}
$$

Numerical values of $P_{0_{m a x}} / P_{00}$ and $P_{0_{\min }} / P_{00}$ for values of a between $-1 / 4$ end 0 are given in tabular form in the next section.

$$
\text { Tabulation of } P_{0_{\text {max }}} / P_{00} \text { and } P_{O_{\text {min }}} / P_{00}
$$

Equation 98 does not lend itself to slide rule calculations because the quantity ($1+2 a$) is approximately equal to $\sqrt{1+4 a}$ for small values of a. [This is readily seen when the quentity $\sqrt{1+42}$ is expanded by means of the binomial theorem. Thus: $\sqrt{1+4 a}=1+2 a-2 a^{2}+4 a^{3}-10 a^{4}+\cdots$.] For this reason numerical values of $P_{0_{\text {max }}} / P_{00}$ and $P_{O_{\text {min }}} / P_{00}$ to six significant figures have been worked out for increments of a equal to 0.005 . These results are given in Table II. The values of $P_{0_{m i n}} / P_{00}$ in Table II are applicable only if V is greater than $1 / 2[1+2 a+\sqrt{1+4 a}]$. For values of V less than this $P_{0_{\min }} / P_{00}$ can be calculated by means of Equation 72. Thus

$$
\begin{equation*}
\frac{P_{o_{\min }}}{P_{00}}=\frac{a^{2}}{c} \tag{99}
\end{equation*}
$$

where c represents a value of V between

Table II
Values of $P_{0_{\min }} / P_{00}$ and $P_{0_{\max }} / P_{00}$ for $a=0.005$

a	$P_{O_{\text {min }}} / P_{00}$	$\mathrm{P}_{\mathrm{Omax}^{\text {m }}} / \mathrm{P}_{00}$	a	$\mathrm{P}_{\mathrm{omin}_{\text {min }}} / \mathrm{P}_{00}$	$\mathrm{P}_{\mathrm{omax}^{\text {max }}} / \mathrm{P}_{00}$
0.005	0.000025	0.589975	0.130	0.023590	0.716410
0.010	0.000102	0.979898	0.135	0.025883	0.704116
0.015	0.000232	0.969768	0.140	0.028337	0.691662
0.020	0.000417	0.959588	0.145	0.030963	0.679037
0.025	0.000658	0.949341	0.150	0.033772	0.666228
0.030	0.000958	0.939042	0.155	0.036779	0.653221
0.035	0.001319	0.928681	0.160	0.040000	0.640000
0.040	0.001742	0.918257	0.165	0.043452	0.626547
0.045	0.002231	0.907769	0.170	0.047157	0.612843
0.050	0.002786	0.897213	0.175	0.051138	0.598861
0.055	0.003412	0.886588	0.180	0.055425	0.584575
0.060	0.004110	0.875890	0.185	0.060049	0.569951
0.065	0.004884	0.865116	0.190	0.065051	0.554949
0.070	0.005736	0.854264	0.195	0.070479	0.539521
0.075	0.006670	0.843330	0.200	0.076393	0.523607
0.080	0.007689	0.832310	0.205	0.082868	0.507132
0.085	0.008798	0.821202	0.210	0.090000	0.490000
0.090	0.010000	0.810000	0.215	0.097917	0.472083
0.095	0.011299	0.798700	0.220	0.106795	0.453205
0.100	0.012701	0.787298	0.225	0.116886	0.433114
0.105	0.014211	0.775789	0.230	0.128578	0.411421
0.110	0.015834	0.764165	0.235	0.142525	0.387474
0.115	0.017516	0.752423	0.240	0.160000	0.360000
0.120	0.019445	0.740555	0.245	0.184289	0.325711
0.125	0.021447	0.728553	0.250	0.250000	0.250000

$$
\frac{1}{2}[1+2 a-\sqrt{1+4 a}] \text { and } \frac{1}{2}[1+2 a+\sqrt{1+4 a}] .
$$

A linear-interpolation for values of a between the tabulated values will give sufficiently accurate results. The largest error would occur for a midwey between 0.245 and 0.250 , or for a equal to 0.2475 . For this
value of a the per cent error [based on the true value of ($\left.P_{0_{m i n}} / P_{00}\right)$] is 2.244. Thus:

$$
\begin{equation*}
\% \in=\frac{\left[\frac{P_{o_{\min }}}{P_{00}}\right]_{\text {interpolated }}-\left[\frac{P_{O_{\min }}}{P_{00}}\right]_{\text {calculated }} \times 100}{\left[\frac{P_{O_{\min }}}{P_{00}}\right]_{\text {calculated }}} \tag{100}
\end{equation*}
$$

For a equel to 0.2475:

$$
\left[\frac{P_{o_{\min }}}{P_{00}}\right]_{\text {celculated }}=\frac{1}{2}[1-0.495-\sqrt{1=0.99}]=0.2025
$$

and;

$$
\begin{aligned}
{\left[\frac{P_{O_{\min }}}{P_{00}}\right]_{\text {interpolated }} } & =0.184289+\frac{1}{2}(0.250000-0.184289) \\
& =0.217144
\end{aligned}
$$

Therefore the per cent errcr is:

$$
\% \in=\frac{(0.217144-0.202500) 100}{0.2025}=2.244
$$

The interpolation error decreases for smaller values of a. For example the per cent error for a midwey between 0.220 and 0.225 is:

$$
\begin{aligned}
& {\left[\frac{P_{o_{\min }}}{P_{00}}\right]_{\text {calculated }}=\frac{1}{2}[1-0.445-\sqrt{1-0.89]}=0.111669} \\
& {\left[\frac{P_{O_{\min }}}{P_{00}}\right]_{\text {interpolated }}=0.106795+\frac{1}{2}[0.116886-0.106795]} \\
& \\
& =0.111840 \\
& \% \in=\frac{0.111840-0.111669}{0.111669} \times 100=0.1531 \% .
\end{aligned}
$$

Having constructed and evaluated a table from which $P_{0_{\text {min }}} / P_{00}$ and $P_{0_{\max }} / P_{00}$ could be readily obtained the next step in the evaluation of the power loss surface was the interpretation of the $P_{0}-V$ and $P_{0}=U$ loci in terms of circuit operation.

$$
\text { Interpretation of } P_{0}-\nabla \text { and } P_{0}-U \text { Loci }
$$

The $P_{0}-V$ loci correspond to operating the π eircuit with U and a constant. Hence these loci give the power loss of the circuit as a function of the terminal voltage ratio squared. It is apparent from the development of the $P_{0}-\nabla$ loci that P_{0} is a multiple V alued function of V; that is, for each value of ∇, P_{0} has two values.

A physical interpretation of this comes most readily from Equation 4. By writing Equation 4 in the form:

$$
P_{2}=\frac{E_{2} R}{Z^{2}}-\frac{E_{1} E_{2}}{2} \cos (\theta-\delta)
$$

it is apparent that for given values of P_{2}, E_{1}, E_{2} and R, and X (and hence π, V, and W) the equation cen be satisfied for two Velues of \mathcal{S}. Since

$$
\begin{equation*}
\cos (\delta-\theta)=\cos (\theta-\delta) \tag{108}
\end{equation*}
$$

Equation 107 will be satisfied when the magnitude of ($\delta-\theta$) equals that of $(\theta-\delta)$. Let γ equal the magnitude of $(\delta-\theta)$ then Equation 107 will hold for δ equal to $(\theta-T)$ or $(\theta+T)$. For each value of δ there will be a unique value of current and therefore a unique value of power loss.

These observations concerning the multiple valued nature of P_{0} are shown graphicelly in Figures 7 and 8. Figure 7 illustrates the two possible values of \mathcal{S} for a single value of P_{2} and Figure 8 shows the two values

Figure $\%$ A graphicel plot of the receiving end power showing that in general two values of $\boldsymbol{\sigma}$ correspond to a single value of P_{2}

Figure 8. A vector diagram showing the two Values of line current that correspond to the two values of δ
of current that correspond to the two values of δ.
The π circuit will be in stable operation wien the angle δ has its smallest value. Therefore from an operating standpoint only the lower porition of the $P_{0}-V$ locus is of interest. The limiting $V a l u e s$ of V on the locus give the range over which V cen vary and still satisfy the specified operating conditions. The expressions for the limiting values of ∇ are given by Equations 55 (minimum value) and 56 (maximum value). The Value of V for which P_{0} is minimum is given directly by Equation 40.

As an illustration of the use of a $P_{0}-V$ locus consider a π circuit where the resistence R, reactance X, input voltage E_{1}, and output power P_{2} have been specified. Under these conditions U and a are constant and variations in V correspond to variations in the output voltage E_{2}. Hence a $P_{0}-\nabla$ locus represents the power loss in the circuit as a function of the output voltage E_{2}.

The limiting values of V become the limiting $V a l u e s$ of E_{2} and these values of E_{2} are calculated directly by means of Equations 55 and 56. The Value of E_{2} for which P_{0} is minimum comes directly from the ∇ alue of V Which corresponds to the minimum value of P_{0}. Thus Equation 40 gives the value of E_{2} wich minimizes the power loss in the circuit.

The interpretation of the $P_{0}-U$ loci in terms of circuit operation is similar to the above discussion of the $P_{0}-V$ loci. The $P_{0}-U$ loci correspond to constent velues of V and a and hence U becomes the independent variable. The multiple valued nature of P_{0} is apparent from Equation 58 and the interpretation of this double-valued characteristic in terms of circuit operation is identicel with that given for the $P_{0}-V$ loci.

The limiting values of U on the $P_{0}-U$ locus give the range orer which U cen Vary and still satisfy the specified operating conditions. The limiting values of U will depend on the value of V for which the $P_{0}=U$ locus pertains. Equation 74 with the minus sign will give the minimum Value of U for values of V greater than $1 / 2[(1+2 a)+\sqrt{1+4 a}]$. For all other permissible values of V, the minimum value of U is zero. The maximum Value of U is always given by Equation 75.

The value of U corresponding to minimum power loss is given either by Equation 40 or by Equation 43 . Equation 40 is applicable when V is greater than $1 / 2[1+2 a+\sqrt{1+4 a}]$ and Equation 43 applies when V is between $1 / 2[1+2 a$ $-\sqrt{1+4 a}]$ and $1 / 2[1+2 a+\sqrt{1+4 a}]$.

As an illustration of when a $P_{0}=U$ locus would be of inferest consider a π circuit where the resistence R, input voltage E_{1}, output voltage E_{2}, and output power P_{2} have been specified. Thus V and a are constant and variations in U correspond to variations in the reactence X. Thus the $P_{0}=U$ locus gives the power loss in the circuit as a function of the reactance X. The limiting values of reactance, plus the reactence necessary to minimize the power loss, are directly calcuable from the appropriate equations which are in terms of U.

Numerical examples are given in the following section to illustrate the application of the results and to demonstrate numerically the observations that have been made with regard to the power loss surface.

Numerical Examples

The following numerical examples are given to illustrate the application of the results obtained from the development of the power loss
surface. The examples are worked on a per unit basis to facilitate the calculations. Since the shunt susceptance of the π circuit did not enter into any of the power less equations it is ignored entirely in the examples.

Example 1. As a first example consider a circuit where the following per unit quentities have been specified:

$$
E_{1}=1.0 ; R=0.03 ; \text { and } P_{2}=-3.0
$$

With these quantities specified the development of the power loss surface will yield the maximum and minimum possible power loss. To find these values of P_{0} it is necessary to calculate P_{00} and a, thus:

$$
\begin{equation*}
P_{00}=\frac{E_{1}^{2}}{R}=\frac{100}{3}=33 \frac{1}{3} \tag{109}
\end{equation*}
$$

and

$$
\begin{equation*}
a=\frac{P_{2}}{P_{00}}=-0.09 \tag{110}
\end{equation*}
$$

From Table II

$$
\begin{equation*}
\frac{P_{0_{\max }}}{P_{00}}=0.81 \tag{111}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{o_{\min }}}{P_{00}}=0.01 \tag{112}
\end{equation*}
$$

Therefore the values of $\mathrm{P}_{\mathrm{o}_{\text {max }}}$ and $\mathrm{P}_{\mathrm{o}_{\text {min }}}$ become:

$$
\begin{equation*}
P_{o_{\max }}=0.81 \times \frac{100}{3}=27 \tag{113}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{o_{\min }}=0.01 \times \frac{100}{3}=\frac{1}{3} . \tag{114}
\end{equation*}
$$

From Equation 114 it is possible to determine the maximum possible efficiency that the circuit can operate at for these particular values of E_{1}, R, and P_{2}. Thus:

$$
\%=\frac{\text { output }}{\text { input }} \times 100=\frac{300}{3 \frac{1}{3}}=90 \% .
$$

Example 1 demonstrates that the minimum possible loss has been fixed by the specification of $\mathrm{E}_{1}, \mathrm{R}_{2}$ and P_{2}. The question naturally arises as to what $\begin{aligned} & \\ & \text { alues of } \mathrm{E}_{2} \text { and } X \text { will result in the circuit actually operating at }\end{aligned}$ this minimun power loss. Example 2 is given to show how the pertinent values of reactance can be obtained if E_{2} is specified and Example 3 shows the calculations involving E_{2} if the reactance has been specified.

Example 2. If in addition to specifying E_{1}, R, and F_{2} the outpui voltage E_{2} is also specified the results of the power loss surface will give the critical velues of reactance. As on example suppose that F_{2} is specified as 1.10. Before the desired V alues of U can be ascertained it is necessary to determine V and note whether V lies between $1 / 2[1+2 a=$ $\sqrt{1+4 a}]$ and $1 / 2[1+2 a+\sqrt{1+4 a}]$ or whether y is greater then $1 / 2[1+2 a+$ $\sqrt[7]{1+4 a}]$.

For E2 equal to 1.10 the value of V is:

$$
V=\left[\frac{E_{2}}{E_{1}}\right]^{2}=1.21 .
$$

The critical values of V are:

$$
V_{\min }=\frac{1}{2}[1+2 a-\sqrt{1+4 a}]=0.01
$$

and

$$
V_{\max }=\frac{1}{2}[1+2 a+\sqrt{1+4 a}]=0.81
$$

Hence for E_{2} equal to 1.10 the value of V is greater than $V_{\max }$ and therefore the limiting values of U can be obtained from Equation 74. Specificslly:

$$
\begin{array}{ll}
U_{\min }=\frac{c}{a^{2}}\left[\frac{1+2 a-\sqrt{1+4 a}}{2}\right]-1 & 119 \\
U_{\min }=\frac{1.21}{0.0081}[0.01]-1=0.4938 & 120 \\
U_{\max }=\frac{c}{a^{2}}\left[\frac{1+2 a+\sqrt{1+4 a}}{2}\right]-1 & 121 \\
U_{\max }=\frac{1.21}{0.0081}[0.81]-1=120 . & 122 \tag{122}
\end{array}
$$

The limiting values of reactance cen be obtained from Equations 120
and 122. The minimum volue of reactance is:

$$
X_{\min }=R \sqrt{U_{\min }}=0.03 \sqrt{0.4938}=0.02108 ;
$$

and the maximum value of reactance is:

$$
X_{\max }=R \sqrt{प_{\max }}=0.03 \sqrt{120}=0.3286
$$

The value of U which will give minimum power loss c an be obtgined by solving Equation 40 for U , thus:

$$
\begin{equation*}
U^{*}=\frac{V-\frac{1}{2}[1+2 a+\sqrt{1+4 a}]}{\frac{1}{2}[1+2 a-\sqrt{1+4 a}]} \tag{125}
\end{equation*}
$$

where U^{*} represents the value of U at minimum power loss. Numerically:

$$
U^{*}=\frac{1.21-0.81}{0.01}=40 .
$$

The corresponding value of reactance is:

$$
\begin{equation*}
\mathrm{X}^{*}=\mathrm{R} \sqrt{\mathrm{U}^{*}}=0.03 \sqrt{40}=0.1897 \tag{127}
\end{equation*}
$$

Hence for these specified $v a l u e s$ of E_{1}, E_{2}, R and P_{2} the per unit re-
actance can be varied from 0.02108 to 0.3286 and for minimum power loss the per unit reactance must be 0.1897.

To illustrate the calculations when V is between $1 / 2[1+2 a-\sqrt{1+4 a}]$ and $1 / 2[1+2 a+\sqrt{1+4 a}]$ assume that E_{2} is to be 0.80 . V now equals 0.64 and the calculations involving U and $F_{0_{m i n}}$ become:

$$
\begin{array}{ll}
U_{\min }=0 & 128 \\
U_{\max }=\frac{0.64}{0.0081}[0.81]-1=63 & 129 \\
0^{*}=\frac{1}{a^{2}}\left[V-(V-a)^{2}\right] & 130 \\
U^{*}=\frac{1}{0.0081}[0.64-0.5329]=13.22 & 131 \\
P_{O_{\min }}=P_{00}\left[\frac{a^{2}}{V}\right]=\frac{100}{3} \frac{0.0081}{0.64}=0.4219 \tag{131}
\end{array}
$$

The corresponding values of reactance are:

$$
\begin{array}{ll}
X_{\min }=0 & 133 \\
X_{\max }=0.03 \sqrt{63}=0.2381 & 134
\end{array}
$$

and

$$
\begin{equation*}
X^{*}=0.03 \sqrt{13.22}=0.1091 \tag{135}
\end{equation*}
$$

The next example demonstrates the calculations necessary for finding the pertinent values of E_{2} when E_{1}, R, X, and P_{2} have been specified.

Example 3. Let the numerical value of X be 0.24 then:

$$
\pi=\left[\frac{x}{R}\right]^{2}=\left[\frac{0.24}{0.03}\right]^{2}=64 .
$$

The limiting velues of V come directly from Equations 55 and 56.
Thus:

$$
\begin{equation*}
\nabla_{\min }=(b+1) \frac{1+2 a-\sqrt{1+4 a}}{2} \tag{137}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{\max }=(b+1) \frac{1+2 a+\sqrt{1+4 a}}{2} \tag{138}
\end{equation*}
$$

Numerically:

$$
\begin{equation*}
V_{\text {min }}=(64+1)(0.01)=0.65 \tag{139}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{\max }=(64+1)(0.81)=52.65 \tag{140}
\end{equation*}
$$

The limiting values of E_{2} can be obtained from the results given in Equations 138 and 140. Thus:

$$
\begin{align*}
& E_{2_{\min }}=E_{1} \sqrt{V_{\min }}=1.0 \sqrt{0.65}=0.8062 \tag{141}\\
& E_{2_{\max }}=E_{1} \sqrt{V_{\max }}=1.0 \sqrt{52.65}=7.256 \tag{142}
\end{align*}
$$

The value of V corresponding to minimum power loss can be obtained from Equation 40:

$$
\begin{align*}
& \nabla^{*}=0 \frac{1+2 a-\sqrt{1+4 a}}{2}+\frac{1+2 a+\sqrt{1+4 a}}{2} \tag{143}\\
& \nabla^{*}=64(0.01)+0.81=1.45
\end{align*}
$$

Therefore the value of E_{2} corresponding to minimum loss becomes:

$$
\begin{equation*}
E_{2}^{*}=E_{1} \sqrt{V^{*}}=1.0 \sqrt{1.45}=1.2041 \tag{145}
\end{equation*}
$$

Thus with the per unit reactance set at 0.24 and with the restrictions that E_{1} equals 1.0; R equals 0.03 ; and P_{2} equals -3.0 the output voltage E_{2} can be varied from 0.8062 to 7.256. Furthermore minimum power loss occurs when the output voltage is 1.204.

These three examples have shown how the results obtained from the development of the power loss surface can be applied to a π circuit when the input voltege E_{I}, resistance R and output power P_{2} are specified. If the input voitage and output voltage exchange roles (that is, the output voltage is fixed and the input voltage is variable) the results of the power loss surface can still be applied. That the results of the power loss surface development can still be used is not immediately obvious because the parameters \underline{a} and \underline{k} become variables. Hence for changes in E_{1} different power loss surfaces are generated and thus the simplicity of moving on a given surface has been lost.

The applicability of the already derived relationships for the case when E_{2} is fixed and E_{I} is variable was found by solving for the conditions of minimum power loss by another method and correlating the results with the loss surface. With $\mathrm{E}_{2}, \mathrm{P}_{2}, \mathrm{R}$, and X specified, minimum power loss will occur when the current in the series impedence of the π circuit is in phase with the output voltage E_{2}. Thus the input voltage corresponding to minimum power loss is:

$$
\begin{equation*}
E_{1} *=\sqrt{\left[E_{2}+\frac{\left|P_{2}\right| R}{E_{2}}\right]^{2}+\left[\frac{\left|P_{2}\right| X}{E_{2}}\right]^{2}} \tag{146}
\end{equation*}
$$

Removing the magnitude signs from P_{2} and noting that:

$$
\begin{equation*}
Z^{2}=R^{2}+X^{2}=R^{2}(1+U) ; \tag{147}
\end{equation*}
$$

Equation 146 can be put in the form:

$$
\begin{equation*}
\mathrm{E}_{1}^{*}=\sqrt{\frac{\left(\mathrm{E}_{2}^{2}-\mathrm{RF}_{2}\right)^{2}+\mathrm{UP}_{2}^{2} \mathrm{R}^{2}}{\mathrm{E}_{2}^{2}}} . \tag{148}
\end{equation*}
$$

At this value of E_{1} the ∇ alue of V becomes:

$$
\begin{equation*}
V^{*}=\left[\frac{E_{\varepsilon}}{E_{1}}\right]^{2}=\frac{E_{2}^{4}}{\left(E_{2}^{2}-\mathrm{RP}_{2}\right)^{2}+\mathrm{UR}^{2} \mathrm{P}_{2}^{2}} \tag{149}
\end{equation*}
$$

Solving Equation 149 for U gives:

$$
\begin{equation*}
J=\frac{E_{2}^{2} E_{1} *^{2}-\left(E_{2}^{2}-R P_{2}\right)^{2}}{R^{2} \mathrm{P}_{2}^{2}} \tag{150}
\end{equation*}
$$

Multiplying Equation 150 by the ratio $\left(E_{1} * / E_{1}{ }^{*}\right)^{4}$ gives:

$$
\begin{equation*}
\mathrm{U}=\frac{1}{\mathrm{a}^{*^{2}}}\left[\mathrm{~V}^{*}-\left(\mathrm{V}^{*}-\mathrm{a}^{*}\right)^{2}\right] \tag{151}
\end{equation*}
$$

The correlation with the previously derived results is now evident because this is the value of U corresponding to minimum power loss when V lies between $1 / 2(1+2 a-\sqrt{1+4 a})$ end $1 / 2(1+2 a+\sqrt{1+4 a})$. Thus the locus traced out by the V_{M} tangent point corresponds to the minimum possible loss when E_{2}, P_{2}, R, and X are specified and E_{1} is the variable.

The minimum power loss for this operating condition is directly calcuable as:

$$
P_{o_{\min }}=\left[\frac{P_{2}}{P_{2}}\right]^{2} R
$$

Equation 152 is in agreement with the power loss surface result as cen be seen from the following:

$$
\begin{aligned}
& P_{o_{\min }}=\left[\frac{P_{2}}{E_{2}}\right]^{2} R \cdot \frac{E_{1}^{2}}{R} \cdot \frac{R}{E_{1}^{2}} \cdot \frac{E_{1}^{2}}{E_{1}^{2}} \\
& P_{o_{\min }}=\frac{R^{2} P_{2}^{2}}{E_{1}^{4}} \cdot \frac{E_{1}^{2}}{R} \cdot \frac{E_{1}}{E_{2}} \\
& P_{o_{\min }}=\left(a^{2}\right)\left(P_{00}\right)\left(\frac{1}{V}\right) .
\end{aligned}
$$

The limiting values of E_{l} are easily determined. The minimum value of E_{1} is fixed by the maximum power transfer theorem, thus:

$$
E_{1_{\min }}=\sqrt{\left|4 R P_{2}\right|} ;
$$

and the maximum possible value of E_{1} is infinity.
The following example is given to show numerically the calculations involved for this particular operating condition.

Example 4. To correlate this example with some of the previous numerical results the specirications for the operation of the circuit are takon from Example 3. Thus: $R=0.03 ; X=0.24 ; P_{2}=-3.0 ;$ and $E_{2}{ }^{2}=1.45$.

To find the velue of E_{1} which will give the minimum loss in the circuit Equation 43 is solved for E_{1}. The result is of course the some as Equation 148. Hence:

$$
\begin{equation*}
\mathrm{E}_{1} *=\sqrt{\frac{\left(\mathrm{E}_{2}^{2}-\mathrm{RP}_{2}\right)^{2}+\mathrm{UR}^{2} \mathrm{P}_{2}^{2}}{\mathrm{E}_{2}^{2}}} \tag{155}
\end{equation*}
$$

and numerically:

$$
\begin{align*}
& E_{1}^{*}=\sqrt{\frac{(1.45+0.09)^{2}+64(0.0009)(9)}{1.45}} \tag{156}\\
& E_{1}^{*}=\sqrt{1.9931}=1.412
\end{align*}
$$

The minimum value of P_{0} can be cotained either from Equation 72 or Equation 152. Thus:

$$
\begin{equation*}
P_{o_{\min }}=\frac{9 \times 0.03}{1.45}=0.1862 \tag{157}
\end{equation*}
$$

The minimum possible value of E_{1} is:

$$
E_{1_{\min }}=\sqrt{(4)(0.03)(3)}=\sqrt{0.36}=0.6
$$

Therefore for this example the per unit input voltage can be increased from 0.6 to infinity and still satisfy the output requirements that $E_{2}=$ 1.2041 and $\mathrm{P}_{2}=-3.0$. For minimum $108 s$ in tine circuit the per unit input voltage should be 1.412. The minimum velue of P_{0} corresponding to this voltage is 0.1862 .

It is interesting to compare this minimum loss with the minimum possible if E_{1} is specified as 1.412 and E_{2} is $\forall a r i a b l e . ~ F o r ~ E_{1}$ equal to 1.412 the parameters P_{00} and a become:

$$
\begin{aligned}
& P_{00}=\frac{E_{1}^{2}}{R}=\frac{1.9913}{0.03}=66.37 \\
& a=\frac{P_{2}}{P_{00}}=\frac{-3.0}{66.377}=0.0452
\end{aligned}
$$

From Table II:

$$
\begin{align*}
& \frac{P_{0_{\min }}}{P_{00}}=0.002231+\frac{2}{50}[0.002786-0.002231] \\
& \frac{P_{0_{\min }}}{P_{00}}=0.002231+0.000022=0.002253 . \tag{161}
\end{align*}
$$

Hence:

$$
P_{o_{\min }}=(66.377)(0.002253)=0.1495
$$

The value of E_{2} necessary to give this minimum power loss is:

$$
\nabla^{*}=64(0.002253)+0.907347=1.05154 ;
$$163

and therefore:

$$
\mathrm{E}_{2}^{*}=1.412 \sqrt{1.05154}=1.4479
$$164

that the minimum loss is less if E_{1} is specified and E_{2} is allowed to vary. For this particular exemple the ratio of the minimum is:

$$
\frac{\mathrm{P}_{0_{\min }}\left[\mathrm{E}_{2} \text { variable }\right]}{\mathrm{P}_{\mathrm{o}_{\min }}\left[\mathrm{E}_{1} \text { variable }\right]}=\frac{0.1495}{0.1862}=0.8029
$$

These numerical examples have been given with the idea that they demonstrate the application of the relationships that came out of the development of the power loss surface. A summary of the conclusions that can be made from the development of the surface is given in the next section.

SUMMARY OF RESULTS

The results obtained from the development of the power loss surface can be sumarized as follows:

1. First of all the maximum and minimum points on the surface were clearly evident and therefore it was possible to obtain explicit relation-
 summarized below.
A. Maximum power loss relationships. The maximum velue of P_{0} is:

$$
P_{o_{\text {max }}}=P_{00}\left[\frac{1+2 a+\sqrt{1+4 a}}{2}\right] .
$$

The relationship between U and V at $P_{O_{m a x}}$ is:

$$
V=U\left[\frac{1+2 a+\sqrt{1+4 a}}{2}\right]+\left[\frac{1+2 a-\sqrt{1+4 a}}{2}\right] .
$$

B. Minimum power loss relationships. When V is greater than $1 / 2[1+2 a$ $+\sqrt{1+4 a}]$ the minimum value of P_{0} is:

$$
P_{0_{\min }}=P_{00}\left[\frac{1+2 a-\sqrt{1+4 a}}{2}\right]
$$

The relationship between U and V at this $v a l u e$ of $P_{O_{m i n}}$ is:

$$
\nabla=U\left[\frac{1+2 a-\sqrt{1+4 a}}{2}\right]+\left[\frac{1+2 a+\sqrt{1+4 a}}{2}\right] .
$$

When V lies between $1 / 2[1+2 a-\sqrt{1+4 a}]$ and $1 / 2[1+2 a+\sqrt{1+4 a}]$ the minimum value of P_{0} is:

$$
P_{00}=P_{00} \cdot \frac{a^{2}}{\nabla} ;
$$

and the relationship between U and V is:

$$
U=\frac{1}{a^{2}}\left[V-(V-a)^{2}\right] .
$$

With these explicit relationships the possibility of operating the circuit at its minimum loss point can be readily determined whenever restrictions are placed on some of the variables.
2. The development of the loss surface pointed out the possibility of operating the circuit at a relative minimum loss rather than at an absolute minimum loss. From the power loss surface it is evident that the circuit can only operate at a relative minimum whenever $1 / 2[1+2 a-\sqrt{1+4 a}]<\mathrm{V}<$ $1 / 2[1+2 a+\sqrt{1+4 a}]$. For V equel to or greater than $1 / 2[1+2 a+\sqrt{1+4 a}]$ it is possible to operate the circuit at its absolute minimum loss. There are two possibilities that can force the circuit to operate at a relative minimum loss. First, with E_{1}, R, P_{2} and E_{2} specified the adjustment of X can only bring the circuit to a relative minimum if V lies within the range specified above. The second situation which only permits operation at a relative minimum is the case where E_{2}, R, X, and P_{2} have been specified. In this case a variation of E_{l} can only bring the circuit to a relative minimum point on the loss surface.
3. The absolute minimum loss is determined by the input voltage E_{l}, the resistence R, and the output power P_{2}. The relative minimum is determined by the output voltage E_{2}, the resistance R , and the output power P_{2}. Thus:

$$
P_{o_{\min }}(\text { absolute })=\frac{E_{1}^{2}}{2 R}\left[1+\frac{R P_{2}}{E_{1}^{2}}-\sqrt{1+\frac{4 R P_{2}}{E_{1}^{2}}}\right] ;
$$

and

$$
P_{o_{\min }}(\text { relative })=\frac{\mathrm{RP}_{2}^{2}}{\mathrm{E}_{2}^{2}}
$$

4. The development of the power loss surface led directly to the $P_{0}-\nabla$ and $P_{0}-U$ loci. These loci are of $v a l u e$ in that they show how the power loss taries when either U or V is fixed. When U is fixed at some Value \underline{b} and V is variable the power loss as a fumction of V is:

$$
P_{0}=\frac{1}{k}\left\{\frac{(1+2 a)(b+1)-(1-b) V \pm 2 \sqrt{b\left[V(1+2 a)(b+1)-\nabla^{2}-a^{2}(b+1)^{2}\right]}}{(b+1)^{2}}\right\}
$$

The value of V corresponding to the minimum value of P_{0} is:

$$
\nabla^{*}=b\left[\frac{1+2 a-\sqrt{1+4 a}}{2}\right]+\left[\frac{1+2 a+\sqrt{1+4 a}}{2}\right] .
$$

The limiting values of V are:

$$
\begin{aligned}
& V_{\min }=\frac{b+1}{2}(1+2 a-\sqrt{1+4 a}) \\
& \nabla_{\max }=\frac{b+1}{2}(1+2 a+\sqrt{1+4 a})
\end{aligned}
$$

When V is fixed at some value c and U is variable the power loss as a function of V is:

$$
P_{0}=\frac{1}{k}\left\{\frac{\left.U(c+1+2 a)-c+1+2 a \pm 2 \sqrt{U\left\{(U+1) c-[a(U+1)-c]^{2}\right.}\right\}}{(U+1)^{2}}\right\}
$$

The value of U corresponding to the minimum value of P_{0} depends on Thus:

For $1 / 2[1+2 a-\sqrt{1+4 a}]<c<1 / 2[1+2 a+\sqrt{1+4 a}]$

$$
U^{*}=\frac{1}{a^{2}}\left[c-(c-a)^{2}\right]
$$

For $c \geq 1 / 2[1+2 a+\sqrt{1+4 a}]$

$$
U^{*}=\frac{2 c-[1+2 a+\sqrt{1+4 a}]}{[1+2 a-\sqrt{1+4 a}]}
$$

The limiting values of U also depend on \underline{c}. Hence: For $1 / 2[1+2 a-\sqrt{1+4 a}] \leq c \leq 1 / 2[1+2 a+\sqrt{1+4 a}]$

$$
u_{\min }=0
$$

$$
u_{\max }=\frac{c}{2 a^{2}}[1+2 a+\sqrt{1+4 a}]-1
$$

For $c>1 / 2[1+2 a+\sqrt{1+4 a}]$

$$
\begin{aligned}
& U_{\min }=\frac{c}{2 a^{2}}[1+2 a-\sqrt{1+4 a}]-1 \\
& U_{\max }=\frac{c}{2 a^{2}}[1+2 a+\sqrt{1+4 a}]-1
\end{aligned}
$$

Clarke, Edith. Calculation of power loss in the three phase transmission lines. Gen. Elect. Rev. 38: 272-276. Jun. 1935.

Gaarden, 0. Determining losses in transmission lines, Elect. Wld. 75: 536-539. Mar. 1920.

Jones, S. M. and Tompkins, J. Determining transmission line losses. Elect. Wld. 92: 993-994. Nov. 1928.

Leng, L. Die Uebertragungsuerluste von lengen Fernleitungen. Electrotechnische Zeit. 51: 278-283. Feb. 1930.

Marshall, S. W., Jr. Line loss calculations. Gen. Elect. Rev. 34: 472473. Aug. 1931.

- Loss calculations for high voltage transmission lines under load. Gen. Elect. Rev. 38: 84-85. Feb. 1935.

Kropp, H. Vergleich der Leitungsuerluste bei der Energievebertragung mit Gleich-und Drehstrom. Elektrotechnik u Maschinenbeu. 54: 109114. Mar. 1936.

Tomiyania, J. Method of calculating long transmission line losses (in Japanese, English summary). Inst of Elect. Engrs. JI. Japan. 55: 791-794. Sept. 1935. (Original not available for examination; microfilm copy of the English summary was obtained from Linda Hall Library, Kensas City, Missouri.)

Transmission Line Losses as Related to the Economic Dispatch of Electric Power

Brownlee, W. R. Co-ordination of incremental fuel costs and incremental transmission losses by fmetions of voltage phase angles. Am. Inst. Elect. Fingrs. Trens. 73. pt. 3: 529-541. Jun. 1954.

Calvert, J. F. and Sze, T. W. A new approach to loss minimization in electric power systems. Am. Inst. Elect. Engrs. Trans. (To be published in 76. pt. 3: 1439-1446.)
and networks. Am. Inst. Elect. Engrs. Trans. 75. pt. 3: 984-988. Oct. 1956.

George, E. E. Intrasystem transmission losses. Am. Inst. Elect. Engrs. Trans. 62: 153-158. Mar. 1943.

Glemn, A. F., Kirohmayer, L. K. and Stagg, G. W. Analysis of losses in interconnected systems. Am. Inst. Elect. Engrs. Trans. 71. pt. 3: 796-808. Oct. 1952.

Kirchmeyer, L. K., and McDeniel, G. H. Trensmission losses and economic loading of power systems. Gen. Elect. Rev. 54: 39-46. Oct. 1951.

Ward, J. B., Eaton, J. R., and Hale, H. W. Total and incrementel losses in power transmission networks. Am. Inst. Elect. Engrs. Trans. 69. pt. l: 626-632. 1950.

ACKINOWLEDGEMENT

The author wishes to express his appreciation to his major professor, Dr. W. B. Boast for his helpful and encouraging comments and suggestions.

[^0]: I_{A} representative list of references from these two areas of generel interest is given in the Selected References.

